Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Se Pu ; 42(3): 234-244, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503700

RESUMO

Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside Ⅰ mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6‴-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6‴-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Flavonas , Saponinas , Triterpenos , Ziziphus , Medicamentos de Ervas Chinesas/química , Ácido Betulínico , Saponinas/química , Ácidos Oleicos , Cromatografia Líquida de Alta Pressão , Ziziphus/química , Sementes
2.
Phytochemistry ; 213: 113744, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37301356

RESUMO

The importance of mitochondria in regulation of aging has been extensively recognized and confirmed. Gynostemma pentaphyllum (Thunb.) Makino, a homology of medicine and food, has been widely utilized as dietary supplement. In this study, the transcriptome of normal cells (wild type mouse embryo fibroblasts) regulated by the 30% aqueous EtOH extract of G. pentaphyllum was firstly evaluated by RNA sequencing and the results revealed that the G. pentaphyllum could up-regulate the genes involved in oxidative phosphorylation (OXPHOS) and sirtuin (SIRT) signaling pathways, indicating its effect in promoting cell viability might be attributed to the role of improving mitochondrial functions. To further discover the bioactive compounds, sixteen undescribed dammarane-type saponins along with twenty-eight known analogues were isolated from the active extract of G. pentaphyllum. Their structures were elucidated by means of comprehensive analysis of NMR and HRMS spectroscopic data. All isolates were evaluated for the regulatory effects on SIRT3 and translocase of the outer membrane 20 (TOM20), and thirteen of them exhibited satisfactory agonist activities on both SIRT3 and TOM20 at 5 µM. Furthermore, the preliminary structure-activity relationships analysis demonstrated the additional hydroxymethyl and carbonyl groups or less sugar residues in saponins could contribute positively to the up-regulatory effect on SIRT3 and TOM20. These findings encouraged the potential roles of G. pentaphyllum and its bioactive saponins in the development of natural drugs for the treatment of aging-related diseases.


Assuntos
Saponinas , Sirtuína 3 , Triterpenos , Camundongos , Animais , Gynostemma/química , Estrutura Molecular , Saponinas/farmacologia , Saponinas/química , Triterpenos/química , Mitocôndrias , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
J Pharm Biomed Anal ; 230: 115393, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062206

RESUMO

Gypenosides (Gps) are the major bioactive components in Gynostemma species. They include neutral Gps and acidic malonylgypenosides (MGps). MGps are abundant in Gynostemma species and can be transformed into corresponding Gps via extraction, concentration, and drying. If only the Gps were quantified and MGps were ignored, the quality of Gynostemma species would be underestimated. This study aimed to develop a sample preparation method involving demalonylation and ultrahigh-performance liquid chromatography-charged aerosol detector (UHPLC-CAD) analysis to determine the contents of gypenoside XLIX (Gp XLIX) and gypenoside A (Gp A). First, the optimized ultrasonic extraction method was established to extract G. longipes powder ultrasonically. Then, the extracted solution was put into a closed container (centrifuge tube) and heated in a water bath at 95 °C. Then, MGps were converted into corresponding Gps. The proposed preparation method was compared with the other three methods, including water bath reflux heating, alkali hydrolysis, and extraction of heated powder, and was shown to exhibit higher conversion and better convenience. Subsequently, an UHPLC-CAD method was established and validated. Gp XLIX and Gp A showed excellent linear correlations between 15.55 and 248.8 µg/mL and 24.10-385.5 µg/mL, respectively (R2 > 0.999). The limit of detection was 1.40 ng (Gp XLIX) and 2.41 ng (Gp A), and the limit of quantification was 7.77 ng and 14.46 ng, respectively. The relative standard deviation for precision, stability, and repeatability was 0.63-3.15%. The average recovery of Gp XLIX and Gp A was 98.97% and 98.23%, respectively. The established method was applied for determining Gp XLIX and Gp A contents in wild or cultivated G. longipes samples collected from the Qinba Mountains area. The contents of Gp XLIX and Gp A were 5.16-23.02 mg/g and 15.78-54.55 mg/g, respectively. Conclusively, the proposed sample preparation and analysis method could be used for the quality control and evaluation of G. longipes.


Assuntos
Gynostemma , Extratos Vegetais , Pós , Cromatografia Líquida , Água
4.
Chin J Nat Med ; 20(9): 712-720, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36162956

RESUMO

Six new prenylated flavonoid glycosides, including four new furan-flavonoid glycosides wushepimedoside A-D (1-4) and two new prenyl flavonoid derivatives wushepimedoside E-F (5-6), and one know analog epimedkoreside B (7) were isolated from biotransformation products of the aerial parts of Epimedium wushanense. Their structures were elucidated according to comprehensive analysis of HR-MS and NMR spectroscopic data, and the absolute configurations were assigned using experimental and calculated electronic circular dichroism (ECD) data. The regulatory activity of compounds 1-7 on the production of testosterone in primary rat Leydig cells were investigated, and 4 and 5 exhibited testosterone production-promoting activities. Molecular docking analysis suggested that bioactive compounds 4 and 5 showed the stable binding with 3ß-HSD and 4 also had good affinity with Cyp17A1, which suggested that these compounds may regulate testosterone production through stimulating the expression of the above two key proteins.


Assuntos
Epimedium , Animais , Epimedium/química , Flavonoides/química , Furanos , Glicosídeos/química , Hidrólise , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Testosterona , beta-Glucosidase/metabolismo
5.
Phytochem Anal ; 33(7): 1147-1155, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908761

RESUMO

INTRODUCTION: Harvest time plays an important role on the quality of medicinal plants. The leaves of Crataegus pinnatifida Bge. var major N.E.Br (hawthorn leaves) could be harvested in summer and autumn according to the Pharmacopoeia of the People's Republic of China (Pharmacopoeia). However, little is known about the difference of the chemical constituents in hawthorn leaves with the harvest seasonal variations. OBJECTIVE: The chemical constituents of hawthorn leaves in different months were comprehensively analysed to determine the best harvest time. METHODS: Initially, the chemical information of the hawthorn leaves were obtained by ultra-high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Subsequently, principal component analysis (PCA) was applied to compare the chemical compositions of hawthorn leaves harvested in different months. Then, an absolute quantitation method was established using high-performance liquid chromatography-charged aerosol detector (HPLC-CAD) to determine the contents of five compounds and clarify the changes of these components with the harvest seasonal variations. Meanwhile, a semi-quantitative method by integrating HPLC-CAD with inverse gradient compensation was also established and verified. RESULTS: Fifty-eight compounds were identified through UHPLC-Q-TOF-MS. PCA revealed that the harvest season of hawthorn leaves had a significant effect on the chemical compositions. The contents of five components were relatively high in autumn. Other four main components without reference standards were further analysed through the semi-quantitative method, which also showed a high content in autumn. CONCLUSIONS: This work emphasised the effect of harvest time on the chemical constituents of hawthorn leaves and autumn is recommended to ensure the quality.


Assuntos
Crataegus , Plantas Medicinais , China , Cromatografia Líquida de Alta Pressão/métodos , Crataegus/química , Folhas de Planta/química , Plantas Medicinais/química
6.
Chin J Nat Med ; 19(9): 713-720, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34561084

RESUMO

There are two source plants for the traditional Chinese medicine Murrayae Folium et Cacumen (MFC) in Chinese Pharmacopoeia, i.e. Murraya exotica L. and M. paniculata (L.) Jack. Herein, a chemical comparison of M. exotica and M. paniculata by high performance liquid chromatography (HPLC) fingerprint analysis coupled with chemometrics and network pharmacology was performed. The main peaks in the fingerprints were identified by liquid chromatography coupled with ion trap/time-of-flight mass spectrometry (LC-IT-TOF-MS) and authenticated by references. The chemometrics results showed that the HPLC fingerprints of these two species were clearly divided into two categories using hierarchical cluster analysis (HCA) and principal component analysis (PCA), and a total of 13 significantly differentiated markers were screened out by orthogonal partial least squares-discriminant analysis (OPLS-DA). However, the following network pharmacology analysis showed that these discriminated markers were found to act via many common targets and metabolic pathways, indicating the possibly similar pharmacological effects and mechanisms for M. exotica and M. paniculata. The above results provide valuable evidence for the equivalent use of these two plants in clinical settings. Moreover, the chromatographic fingerprint analysis coupled with chemometrics and network pharmacology supplies an efficient approach for the comparative analysis of multi-source TCMs like MFC.


Assuntos
Murraya , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Espectrometria de Massas , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...